The 1:1 Molecular Adduct of Triphenyltin Chloride with 2-(m-Methylphenyliminomethyl)phenol, $\left[\operatorname{SnCl}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}\right)\right]$

By Hoong-Kun Fun
School of Physics, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia
and Soon-Beng Teo, Siang-Guan Teoh* and Guan-Yeow Yeap
School of Chemical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia

(Received 30 March 1990; accepted 6 February 1991)

Abstract

Chloro[2-(m-methylphenyliminomethyl)phenol]triphenyltin, $M_{r}=596.72$, triclinic, $P \overline{1}, a=$ 9.705 (2),$\quad b=10.758$ (1),$\quad c=15.201$ (3) $\AA, \quad \alpha=$ $85 \cdot 20(1), \quad \beta=73.54(1), \quad \gamma=66.98(1)^{\circ}, \quad V=$ $1400 \cdot 2$ (6) $\AA^{3}, Z=2, D_{x}=1.415 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71069 \AA, \quad \mu=1.03 \mathrm{~mm}^{-1}, \quad F(000)=604, \quad T=$ $295 \mathrm{~K}, R=0.0550$ for 4606 observed reflections. The geometry about the Sn atom is trigonal bipyramidal. The three phenyl rings are bonded to Sn in a trigonal plane [angles subtended at Sn vary from 114.5 (2) to $\left.122 \cdot 5(2)^{\circ}\right]$ while the Cl and O atoms of the ligand occupy the trans positions [176.9(1) ${ }^{\circ}$].

Introduction. The coordination interactions of inorganic tin and organotin(IV) compounds with N-salicylideneaniline and its meta-substituted derivatives have been studied. From infrared spectral studies, Kogan, Osipov, Minkin \& Sokolov (1965), Srivastava \& Chauhan (1977a) and Dwivedi, Bhatnagar \& Srivastava (1986) deduced that in the adducts obtained from such interactions, the Sn atom coordinates to the azomethine N atom. Recent X-ray crystallographic studies on the tin complexes of N -salicylideneaniline and related Schiff bases (Kamwaya \& Khoo, 1985; Khoo, Charland, Gabe \& Smith, 1987) have shown that only the phenolic oxygen of the ligand is involved in bonding to the Sn atom. In view of the above, we carried out the synthesis and full structural investigation of the title adduct.

Experimental. Reagents were used without further purification. Preparation of the title adduct was carried out according to the procedure of Srivastava \& Chauhan (1977b). The yellow-to-red crystalline product was recrystallized in dichloromethane. Preliminary data obtained from Weissenberg and Buerger precession photographs yielded approximate cell dimensions and showed a triclinic system. Data collection on a crystal $0.4 \times 0.2 \times 0.3 \mathrm{~mm}$ was obtained

[^0]with a Syntex $P 2_{1}$ diffractometer using the $2 \boldsymbol{\theta} / \boldsymbol{\theta}$ mode in the index range $0<h<10,-10<k<10$, $-16<l<16$ to the 2θ limit of 53°. A variable scan speed of $5 \cdot 0-29 \cdot 3^{\circ} \mathrm{min}^{-1}$ was used. Lattice parameters refined using 25 reflections in the range $38<2 \theta$ $<45^{\circ}$. Standard reflection 011 checked every 50 reflections; no significant deviation. The data were corrected for Lorentz and polarization effects. 5448 reflections were collected, 5129 unique ($R_{\mathrm{int}}=$ 0.0651), of which 4606 observed reflections with $I>$ $2 \cdot 5 \sigma(I)$ were used for refinement of the structure. The space group was confirmed as $P \overline{1}$ from successful solution and refinement. Structure solved using SHELXS86 (Sheldrick, 1986) with $R(E)=0.24$ and refined using SHELX76 (Sheldrick, 1976). Scattering factors for all atoms inlaid in SHELX76.
Structure determination and refinement performed on IBM4361/4381. Refinement by full-matrix least squares based on F with idealized riding H atoms (C-H $0.96 \AA$); anisotropic refinement for non- H atoms, isotropic refinement for H atoms. In order to correct the observed structure factors for absorption effects, $A B S O R B$ (Ugozzoli, 1987) was used (correction factors min.-max.: $0.9154-1 \cdot 1442$). The final agreement factors were $R=0.0550, w R=0.0575$. Weight for every observed structure factor calculated according to $w=5 \cdot 0910 /\left[\sigma^{2}(F)+0.0006 F^{2}\right],(\Delta / \sigma)_{\max }$ $=0.063, \Delta \rho_{\text {max }}=0.864$ and $\Delta \rho_{\text {min }}=-1.181 \mathrm{e} \AA^{-3}$. Geometrical calculations performed with XANADU (Roberts \& Sheldrick, 1975) and illustrations drawn with ORTEP (Johnson, 1965). The final atomic coordinates are given in Table $1 \dagger$ while selected bond lengths and angles are listed in Table 2. A perspective view of the title complex is given in Fig. 1.

[^1]Table 1. Atomic coordinates ($\times 10^{4}, \times 10^{5}$ for Sn) and $B_{\mathrm{eq}}\left(\AA^{2}\right)$ values

$B_{\text {eq }}=8 \pi^{2}\left(U_{11}+U_{22}+U_{33}\right) / 3$.				
	x	y	z	$B_{\text {eq }}$
Sn	11668 (4)	30256 (3)	22767 (2)	3.11(2)
Cl	2118 (2)	4932 (2)	2176 (1)	4.94 (7)
0	216 (4)	1362 (3)	2321 (2)	3.53 (14)
Cl	-284 (5)	678 (5)	3003 (3)	3.39 (21)
C2	- 1005 (7)	1222 (6)	3902 (4)	4.46 (25)
C3	- 1510 (8)	466 (7)	4596 (4)	5.08 (30)
C4	-1316 (8)	-835 (7)	4453 (4)	5.44 (32)
C5	-573 (8)	- 1432 (6)	3591 (4)	4.99 (29)
C6	-91 (6)	-650 (5)	2861 (3)	3.75 (22)
C7	651 (6)	- 1317 (5)	1984 (4)	3.87 (23)
N	1161 (5)	-737(4)	1256 (3)	3.41 (17)
C8	1933 (5)	-1340 (5)	363 (3)	$3 \cdot 19$ (19)
C9	2515 (6)	- 2726 (5)	216 (3)	$3 \cdot 38$ (20)
Cl0	3284 (5)	-3281 (5)	-662 (3)	$3 \cdot 55$ (21)
Cll	3476 (6)	-2411 (6)	- 1370 (4)	4.09 (24)
Cl 2	2908 (7)	- 1037 (6)	- 1218 (4)	$4 \cdot 37$ (25)
CI3	2116 (6)	-482 (5)	-348(4)	3.89 (22)
CI4	3880 (7)	-4786 (6)	-819 (5)	$4 \cdot 86$ (28)
C21	- 1086 (6)	4306 (5)	3041 (3)	3.90 (21)
C22	- 2402 (7)	4268 (7)	2890 (5)	$5 \cdot 50$ (29)
C23	- 3877 (8)	5068 (8)	3403 (6)	6.76 (37)
C24	-4037 (10)	5880 (8)	4087 (6)	7.66 (41)
C25	- 2769 (12)	5934 (9)	4261 (6)	8.55 (49)
C26	- 1287 (9)	5160 (7)	3720 (4)	6.17 (34)
C31	2883 (5)	1691 (5)	2919 (3)	3.51 (20)
C32	3348 (6)	298 (6)	2832 (4)	4.48 (24)
C33	4482 (7)	- 569 (7)	3216 (4)	5.59 (30)
C34	5173 (8)	-93 (9)	3677 (5)	6.63 (36)
C35	4736 (8)	1302 (9)	3767 (4)	6.25 (37)
C36	3597 (7)	2187 (7)	3378 (4)	$4 \cdot 79$ (28)
C41	1776 (5)	2753 (4)	837 (3)	$3 \cdot 15$ (19)
C42	703 (6)	3278 (5)	334 (4)	3.87 (22)
C43	1139 (7)	3176 (5)	-606 (4)	4.48 (26)
C44	2674 (8)	2497 (6)	- 1071 (4)	4.97 (29)
C45	3766 (7)	1944 (6)	- 588 (4)	5.01 (27)
C46	3344 (6)	2069 (5)	351 (4)	4.16(23)

Fig. 1. A perspective view of the molecule.

Discussion. The present compound crystallizes in a ligand:organotin ratio of $1: 1$, unlike the $3: 2$ stoichiometry reported for the triphenyltin complexes of similar Schiff bases (Khoo et al., 1987).

The geometry about the Sn atom is trigonal bipyramidal. The three phenyl rings are bonded to Sn in

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

a trigonal plane [angles subtended at Sn vary from 114.5 (2) to $122 \cdot 5(2)^{\circ}$] while Cl and O occupy the trans positions $\left[176.9(1)^{\circ}\right]$. Coordination of the Schiff base to the Sn atom takes place via the phenolic O atom in contrast to the $\mathrm{Sn}-\mathrm{N}$ coordinating mode reported earlier for the adducts formed by tin(II) and tin(IV) halides and organotin(IV) halides with salicylidene-meta-substituted anilines (Kogan et al., 1965; Srivastava \& Chauhan, 1977b; Dwivedi et al., 1986).

The phenolic proton of the ligand has shifted to the imine N atom; the $\mathrm{H}(\mathrm{N}) \cdots \mathrm{O}$ distance of $1.834 \AA$ indicates a weak hydrogen bond. This phenomenon of intramolecular hydrogen bonding was well substantiated by Bullock, Ladd, Povey \& Tajmir-Riahi (1979) and by Kamwaya \& Khoo (1985) in the tin complexes of salicylideneanilines mentioned earlier.
The $\mathrm{Sn}-\mathrm{O}$ bond distance $[2 \cdot 301$ (3) \AA] is in accord with those found in the $\mathrm{Ph}_{3} \mathrm{SnCl}:$ salicylideneaniline adduct $[2 \cdot 280$ (4) \AA] (Khoo et al., 1987). The bond lengths and bond angles for the phenyl rings are
normal and the respective values are in the ranges $1 \cdot 361-1 \cdot 408 \AA$ and $117 \cdot 5-121 \cdot 6^{\circ}$. The three phenyl rings are non-coplanar; each of them is rotated so that they may be bonded to tin in the trigonal plane.

The authors wish to thank the Malaysian Government and Universiti Sains Malaysia for the R\&D Grant No. 123/3203/2504.

References

Bullock, J. I., Ladd, M. F. C., Povey, D. C. \& Tajmir-Riaht, H. A. (1979). Acta Cryst. B35, 2013-2020.

Dwivedi, V. K., Bhatnagar, K. \& Srivastava, A. K. (1986). Synth. React. Inorg. Met. Org. Chem. 16(5), 715-718.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Teñnessee, USA.
Kamwaya, M. E. \& Khoo, L. E. (1985). Acta Cryst. C41, 1027-1029.
Khoo, L. E., Charland, J. P., Gabe, E. J. \& Smith, F. E. (1987). Inorg. Chim. Acta, 128, 139-145.
Kogan, V. A., Osipov, O. A., Minkin, V. I. \& Sokolov, V. P. (1965). Russ. J. Inorg. Chem. 10(1), 45-48.

Roberts, P. \& Sheldrick, G. M. (1975). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Srivastava, T. N. \& Chauhan, A. K. S. (1977a). J. Inorg. Nucl. Chem. 39, 371-373.
Srivastava, T. N. \& Chauhan, A. K. S. (1977b). Synth. React. Inorg. Met. Org. Chem. 7(4), 373-378.
Ugozzoli, G. (1987). Comput. Chem. 2, 109-120.

Structure of a Nickel Complex with \boldsymbol{p}-Nitrophenylazothiomethyl- \boldsymbol{N}-phenylcarboximide Anion Radical

By Yu. A. Simonov
Institute of Applied Physics, Academy of Sciences of Moldova, 277028, Kishinev, USSR
L. P. Battaglia, A. Bonamartini Corradi and G. Pelosi
Institute of General and Inorganic Chemistry, University of Parma, I-43100, Parma, Italy
M. D. Revenko
Moldavian State University, 277014, Kishinev, USSR
and N. V. Gerbeleu
Institute of Chemistry, Academy of Sciences of Moldova, 277028, Kishinev, USSR

(Received 7 March 1990; accepted 11 February 1991)

Abstract

Ni}\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NNC}\left(\mathrm{SCH}_{3}\right) \mathrm{NC}_{6} \mathrm{H}_{5}\right]_{2}, \quad M_{r}=\) 659.3, monoclinic, $P 2_{1} / c, \quad a=11.660(8), \quad b=$ 19.428 (6),$\quad c=13.025$ (6) $\AA, \quad \beta=90.47$ (2) ${ }^{\circ}, \quad V=$ 2950 (3) $\AA^{3}, Z=4, D_{x}=1.484 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA, \mu=26.42 \mathrm{~cm}^{-1}, F(000)=1360$, $T=295 \mathrm{~K}, R=0.0470, w R=0.0533$ for 4264 reflections, $I \geq 2 \sigma(I)$. The coordination of the Ni atom is tetrahedral. This is the first case of such a coordination polyhedron for nickel complexes with ligands derived from S-alkylisothiosemicarbazide.

Introduction. $\quad S$-Alkylisothiosemicarbazides, $\quad R_{1} R_{2^{-}}$ $\mathrm{N}(1)-\mathrm{N}(2)=\mathrm{C}(3)\left(\mathrm{SCH}_{3}\right)-\mathrm{N}(4) R_{3} R_{4} \quad(L)$, behave differently from those with a non-substituted sulfur atom $R_{1} R_{2}-\mathrm{N}-\mathrm{NH}-\mathrm{CS}-\mathrm{N} R_{3} R_{4}$. While the latter are coordinated by the metal via the S and $\mathrm{N}(1)$ atoms, the former use the N atoms $\mathrm{N}(1)$ and $\mathrm{N}(4)$

0108-2701/91/091826-04\$03.00
(Malinowskii, Simonov, Gerbeleu, Yampol'skaya, Revenko \& Shova, 1985).

It is known that the $\mathrm{Ni}^{1 \mathrm{II}}$ complexes can form two types of coordination geometry with the L ligands: octahedral high-spin neutral or cationic complexes, such as $\left[\mathrm{Ni} L_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]$ (Bourosh, Revenko, Simonov, Gerbeleu, Dvorkin \& Malinowski, 1987) and $\left[\mathrm{Ni}_{2} \mathrm{im}_{2}\right] \mathrm{I}_{2}$ (Revenko, Bourosh, Gerbeleu, Simonov, Virtosu \& Malinowskii, 1989) and square-planar low-spin cationic complexes, such as $\left[\mathrm{Ni} L_{2}\right] X_{2}$ (Leovac, Babin, Canic \& Gerbeleu, 1980) where R_{1}. $=R_{2}=R_{3}=R_{4}=\mathrm{H} ; X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$.
In all these cases L is neutral and after coordination assumes the imino form

© 1991 International Union of Crystallography

[^0]: * Author to whom all correspondence should be addressed.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters, full lists of bond lengths and angles, and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53977 (24 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

